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Abstract. We present an improved “cooling schedule” for simulated annealing algorithms for
combinatorial counting problems. Under our new schedule the rate of cooling accelerates as the
temperature decreases. Thus, fewer intermediate temperatures are needed as the simulated an-
nealing algorithm moves from the high temperature (easy region) to the low temperature (difficult
region). We present applications of our technique to colorings and the permanent (perfect matchings
of bipartite graphs). Moreover, for the permanent, we improve the analysis of the Markov chain
underlying the simulated annealing algorithm. This improved analysis, combined with the faster
cooling schedule, results in an O(n” log* n) time algorithm for approximating the permanent of a
0/1 matrix.

1. Introduction. Simulated annealing is an important algorithmic approach for
counting and sampling combinatorial structures. Two notable combinatorial applica-
tions are estimating the partition function of statistical physics models and approxi-
mating the permanent of a nonnegative matrix. For combinatorial counting problems,
the general idea of simulated annealing is to write the desired quantity, say, Z, (which
is, for example, the number of colorings or matchings of an input graph) as a tele-
scoping product:
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where Zy11 = Z and Zj is trivial to compute. By further ensuring that each of the
ratios Z;/Z;_1 is bounded, a small number of samples (from the probability distribu-
tion corresponding to Z,;_1) suffices to estimate the ratio. These samples are typically
generated from an appropriately designed Markov chain.

Each of the quantities of interest corresponds to the counting problem at a differ-
ent temperature. The final quantity Z = Zy,; corresponds to the zero temperature,
whereas the trivial initial quantity Z; is the infinite temperature. The temperature



slowly decreases from a high temperature (easy region) to a low temperature (difficult
region). A notable application of simulated annealing to combinatorial counting is
the algorithm of Jerrum, Sinclair, and Vigoda [10] for approximating the permanent
of a nonnegative matrix. In their algorithm, the cooling schedule is uniform: the rate
of cooling was constant.

Our first main result is an improved cooling schedule. In contrast to the pre-
vious cooling schedule for the permanent, our schedule is accelerating (the rate of
cooling accelerates as the temperature decreases). Consequently, fewer intermediate
temperatures are needed, and thus fewer Markov chain samples overall suffice. It is
interesting to note that our schedule is similar to the original proposal of Kirkpatrick,
Gelatt, and Vecchi [13] and is related to schedules used recently in geometric settings
by Lovész and Vempala [14] and Kalai and Vempala [11].

We illustrate our new cooling schedule in the context of colorings, corresponding
to the antiferromagnetic Potts model from statistical physics. We present general
results defining a cooling schedule for a broad class of counting problems. These
general results seem applicable to a wide range of combinatorial counting problems,
such as the permanent, and binary contingency tables [1].

The permanent of an n x n matrix A is defined as

per(A) =Y [ o0,

o i=1

where the sum goes over all permutations o of [n]. The permanent of a 0/1 matrix A is
the number of perfect matchings in the bipartite graph with bipartite adjacency matrix
A. In addition to traditional applications in statistical physics [12], the permanent has
recently been used in a variety of areas, e.g., computer vision [16] and statistics [15].
Jerrum, Sinclair, and Vigoda presented a simulated annealing algorithm [10] for the
permanent of nonnegative matrices with running time O(n'® log3 n) for 0/1 matrices.

Our cooling schedule reduces the number of intermediate temperatures in the sim-
ulated annealing for the permanent from O(n?logn) to O(nlog? n). We also improve
the analysis of the Markov chain used for sampling. The improved analysis comes
from several new inequalities relating sets of perfect matchings in bipartite graphs.
The consequence of the new analysis and improved cooling schedule is an O(n” log4 n)
time algorithm for estimating the permanent of a 0/1 n x n matrix. Here is the formal
statement of our result.

THEOREM 1.1. For all € > 0, there exists a randomized algorithm to approx-
imate, within a factor (1 & €), the permanent of a 0/1 n x n matrizx A in time
O(n"log*(n) +nSlog®(n)e=2). The algorithm extends to arbitrary matrices with non-
negative entries.

The remainder of the paper is organized as follows. We introduce some basic
machinery and definitions in the following section. In section 3 we present our new
cooling schedule, motivated by its application to colorings. We then focus on the
permanent in section 4. We begin by presenting the simulated annealing algorithm
for the permanent in section 4. In section 5 we explain the background techniques for
analyzing the Markov chain. We present our new inequalities in section 6. Finally, in
section 7 we use these new inequalities for bounding the mixing time of the Markov
chain. We then conclude the analysis of the permanent algorithm for 0/1 matrices in
section 8.



2. Preliminaries.

2.1. Colorings and Potts model. Let G = (V, E) be the input graph and &
be the number of colors. A (valid) k-coloring of G is an assignment of colors from [k]
to the vertices of G such that no two adjacent vertices are colored by the same color
(i.e., o(u) # o(v) for every (u,v) € E). Let Q = Q(G) denote the set of all k-colorings
of G. For input parameters €, §, our goal is to approximate || within a multiplicative
factor 1 4 e with probability > 1 — 6. This is commonly known as a fully polynomial
randomized approximation scheme (fpras) for counting colorings.

The colorings problem corresponds to the zero-temperature version of the anti-
ferromagnetic Potts model. In addition to the underlying graph G and the number of
colors k, the Potts model is also specified by an activity! A. The configuration space
of the Potts model, denoted [k]V, is the set of all labelings o : V — [k]. The partition
function of the Potts model counts the number of configurations weighted by their
distance from a k-coloring. More precisely, for activity A > 0, the partition function
of the Potts model is

ZN) = Y M@,
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where M(o) = Mg(o) = |(u,v) € E : o(u) = o(v)| is the number of monochromatic
edges of the labeling 0. For A = 0 we also define 0° = 1, and thus Z(0) = |Q]. In
section 3.1 we will consider simulated annealing algorithms for estimating the partition
function of the Potts model.

An elementary component of the upcoming algorithms is the following approach
for estimating the ratio of the partition function at a pair of temperatures. In partic-
ular, for a sequence 1 = Ag > Ay > -+ > A\p > A1 = 0 we will estimate the ratios
a; = Z(Niy1)/Z(N;) for all 0 <4 < £. Assuming 1/2 < a; < 1, we can approximate
«; efficiently using the following unbiased estimator. Let X; ~ m; denote a random
labeling chosen from the distribution m; defined by Z(\;) (i.e., the probability of a
labeling o is m;(0) = A7) /Z(\)). Let YV; = (Aig1 /X)) Then Y, is an unbiased
estimator for «;:

1) B) =By, ((ua/A)") = 3
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= Q4.
The expected value of Y =YY ... Y, is

Z(0)
EY)=]|EY)= ,
) =TIE0 = Z5
where Z(1) is easy to compute. Thus, our goal of estimating Z(0) = || can be
reduced to estimating E (V).
Assume that we have an algorithm for generating labelings X; from ;. We draw

64(¢ + 1)/e? samples of X; and take the mean Y; of their corresponding estimators
Y;. We have

Var (?z) _ g? Var (Y;) < 2
E(Y;)" 64(+1) E(v;)’ ~ 16({+1)

IThe activity corresponds to the temperature of the system. Specifically, the temperature is
—1/In); thus A = 1 corresponds to the infinite temperature and A = 0 corresponds to the zero
temperature.



Hence for Y =YY ...Y, we have

Varl);) _ <1+ Var(Yoz)> <1+ Var(Y?) 4 §652/16 1< 52/8,
E(Y) E (Yo) E (V)

where in the last two inequalities we used 1+ x < e* (true for all z), and e* — 1 < 2x

(true for z € [0, 1]). Now, by Chebyshev’s inequality, with probability at least 7/8 we

have that the value of Y is in the interval [(1 —&)E (Y), (1 +¢)E (Y)].

Of course, we will not be able to obtain perfect samples from ;. Assume now that
we have X/ which are from a distribution with a variation distance < ¢2/(512(¢£+1)?)
of 7; (we choose the variation distance to be 1/8th of the reciprocal of the number of
all samples). Let Y be defined as Y above, but instead of X; we will use X/. If we
couple X; with X optimally, then with probability > 7/8 we have Y = Y. Hence,
Y is in the interval [(1-2)E(Y), (1+¢)E(Y)] with probability > 3/4.

2.2. Markov chain basics. For a pair of distributions p and 7 on a finite space
Q) we will measure their distance using variation distance, defined to be

drv(p,m) = 5 3 Inle) = m(a)].

e

For an ergodic Markov chain with finite state space €2, transition matrix P, and unique
stationary distribution 7, we are interested in the mizing time, defined to be

7(8) = max7,(6),

where
7.(8) = min{t : dprv(P'(z,-),n) < 6}.

In the case of the permanent, we will bound the mixing time by the canonical
paths method. For some S C Q, for each (I, F) € Qx S, we will define a canonical path
from I to F, denoted (I, F'), which is of length < ¢. The path is along transitions of
the Markov chain (i.e., along pairs (z,y) € Q% where P(x,5) > 0). We then bound the
weighted sum of canonical paths (or “flow”) through any transition. More precisely,
for a transition T =z — y, let

B w(I)m(F)
A= 2 Py

Tev(I,F)

denote the congestion through the transition 7.
Let

p = max p(T).

Then (see [17, 4]), for any initial state x € 2, the mixing time is bounded as

Tlp

72(6) < 0S)

(Inm(z)~' +Ins ).

The factor 1/7(S) comes from restricting to F' € S; see Lemma 9 in [10].



3. Improved cooling schedule. We begin by motivating the simulated an-
nealing framework in the context of colorings. We then present a general method for
obtaining improved cooling schedules and show how it can be applied to colorings.
We conclude with the proofs of technical lemmas for improved cooling schedules.

3.1. Basic cooling schedule for counting colorings. Our focus in this sec-
tion is obtaining an fpras for counting all k-colorings of a given graph G. Let Q = Q(G)
denote the set of k-colorings of G. We are of course considering only cases where
|Q2] > 1. There are various situations where a polynomial-time algorithm for approx-
imating || exists; see, e.g., [5] for a survey and [6] for a more recent result when
k= Q(A/log A) for planar graphs. Our aim is to improve the running time of these
approximate counting algorithms.

For the purposes of reducing the approximation of || to sampling from (2, we
will define a sequence of activities of the antiferromagnetic Potts model (defined in
section 2.1). We will express |{2| as a telescoping product over instances of the Potts
model where we slowly move from the original k-colorings (corresponding to activity
A = 0) to a trivial instance of the Potts model, namely, A = 1, since Z(1) = k™.
We specify a sequence of activities so that the partition functions do not change by
more than a constant factor between successive activities. This allows us to reduce
the activity to an almost zero value while being able to estimate the ratios of two
consecutive partition functions.

The partition function Z(\) can be viewed as a polynomial in A. Notice that its
constant coefficient equals ||, the number of k-colorings of G. Moreover, Z(1) =
|Q(Gy,)| = k™ is the sum of the coefficients of Z. It can be shown that for & > A, the
number of k-colorings of G is bounded from below by (k/e)™ (i.e., || > (k/e)™). For
completeness, we prove this lower bound in the appendix in Corollary A.2. If we used
the trivial lower bound of |Q| > 1, we would introduce an extra factor of O(log k) in
the final running time. Observe that the value of the partition function at A = 1/e"
is at most 2|Q]:

(3.1) Q] < Z(1/e") < |0 + Z(1)(1/e") < Q] +E" /e < 2/Q.

This will be sufficiently close to |€2] so that we can obtain an efficient estimator for |(2|.
We will define a sequence, called a cooling schedule,

>‘0 = la)‘lv"'aAZ < 1/en7)‘€+1 = 07
where £ = O(nlogn), and, for all 0 <4 < ¢,

1 < M <1.
2 Z(\i)

Notice that for i = £ the inequality follows from (3.1), so we need to take care of i < /.
We estimate the number of k-colorings of G via the telescoping product

=k ]
0<i<e

where a; = Z(Ait1)/Z(N\;). We will estimate «; by sampling from the probability
distribution corresponding to Z; as described in section 2.1.
A straightforward cooling schedule sets A\j;; = 271/ );. Then,

Z(Nip1) = (27 Z(N) = Z(N) /2,



as required. This specifies a uniform cooling schedule with a rate of decrease 21/

Note that once A\; < k=™ we can set A\p11 = 0 since we then have Z(\y) < |Q|+1 <
2Q), assuming |2] > 1. Therefore, this uniform cooling schedule is of length ¢ =
O(nmlogk). We present a new cooling schedule which is only of length O(nlogn).

Our goal is to obtain a general cooling schedule which applies to all instances of the
colorings problem and which will also apply to many other combinatorial problems. If
we restrict our attention to certain regions of k versus A, sometimes a straightforward
telescoping product is more efficient for colorings. In particular, assume k > (1+¢)A,
where € > 0 is a constant; then the removal of all at most A edges adjacent to one of
the vertices increases the number of colorings by a factor at most k/(k—A) < (1+¢)/e.
Hence, in this case one can obtain a schedule of length O(n), but such a schedule does
not apply, for example, to the previously mentioned results of [6], which hold for
k= Q(A/log A) for planar graphs.

3.2. New cooling schedule. Note that if we had Z(\) = k™A™, we could not
decrease \ faster than 271/, Fortunately, in our case the constant term of Z()) is
at least one. To illustrate the idea of nonuniform decrease, let fi(\) = A. As we
decrease A, the polynomial f,,, will always decrease faster (in a relative sense) than Z.
At first (for values of A close to 1) this difference will be small; however, as A goes to 0,
the rate of decrease of Z slows because of its constant term. Thus, at a certain point
fm—1 will decrease faster than Z. Once A reaches this point, we can start decreasing
A by a factor of 271/(m=1) " As time progresses, the rate of Z will be bounded by the
rate of polynomials f,,; then fp,_1, fin_2,-.., all the way down to f; for A close to 0.
When the polynomial f; “dominates” we can decrease A by a factor of 2-'/%. Note
that the rate of decrease increases with time; i.e., the schedule is accelerating.

Now we formalize the accelerated cooling approach. We state our results in a
general form which proves useful in other contexts, e.g., for the permanent later in
this paper, and binary contingency tables [1].

Let Z(A) be the partition function polynomial. Let s be the degree of Z(\) (note
that s = m for colorings). Our goal is to find 1 = Ay > Ag > -+- > Ay > A1 = 0 such
that Z(\;)/Z(Niy1) < ¢ (e.g., for colorings we took ¢ = 2). The important property of
Z(A) for colorings is Z(0) > 1 (e.g., Z(\) has positive constant term). In fact, when
k> A, we have Z(0) > (k/e)™, which will save a factor of O(log k) in the final result.
For completeness, we prove this lower bound in the appendix in Corollary A.2.

For some applications it will not be possible to make the constant term positive;
instead we will show that a coefficient ap of AP is large (for some small D). Finally,
let v be an upper bound on Z(1)/ap. For colorings we can take v = e™. The
measures how small A needs to get for Z(\) to be within constant factor of Z(0).
Now we present a general algorithm in terms of parameters s, ¢, vy, D.

Algorithm for computing the cooling schedule A, given parameters s, ¢, v, and D:

Set \p =1,i==s, and 7 = 0.
While A; > 1/~ do

Set A\ji1 = Cil/i)\j.

Ifi>D+1and \jy1 < (s/7)/ D),

Set A\j+1 = (s/7)*/~P) and decrement i = i — 1.

Increment j = 5 + 1.

Set £ = j.

The following lemmas prove that the above algorithm produces a short schedule.
We prove the lemmas in section 3.3. The first lemma bounds the number of interme-
diate temperatures in the above cooling schedule, i.e., the length ¢ of the A sequence.



LEMMA 3.1. Let ¢,y >0, D >0, and let g, ..., ¢ be the sequence computed by
the above algorithm. Then £ = O([(D + 1)log(s — D)+ s/(s — D)]log.(s7)). If ¢ and
D are constants independent of s, then £ = O((log s) log(s7y)).

Note that for colorings £ = O(n(logn)logk) (assuming Z(0) > 1), and when
k> A, we have £ = O(nlogn) since Z(0) > (k/e)™.

The following lemma shows that for the sequence of the A; the value of Z(\)
changes by a factor < ¢ for consecutive A\; and A;41. For the later application to
the permanent, we will need to simultaneously consider a collection of polynomials.
Therefore, we state the following lemma in this more general context.

LEMMA 3.2. Let c,v,D > 0, and let Zy,...,Z,; be a collection of polynomials
of degree s. Suppose that for every i € [q], the polynomial Z; satisfies the following
conditions:

(i) Z; has nonnegative coefficients.

(ii) There ewists d < D such that the coefficient of x® in Z; is at least Z;(1) /7.
Let Mg, A1, ..., ¢ be the sequence constructed by the above algorithm. Then

Zi(N\j) < cZi(Nj41) for every i € [q] and j € [£].

Recall from section 2.1 that to estimate Hf:o a; within a factor (1 £ ¢) with
probability > 3/4 we need to generate O(¢/e?) samples from within variation distance
O(g2/?) of m; for all i = 0,...,£. To illustrate the application of the shorter cooling
schedule, recall that for colorings, when k£ > A we have { = O(nlogn). Hence, we
need a total of O(n?c=2log? n) samples. For k > 2A, for all activities 1 < A < 0, there
is a Markov chain with mixing time T'(¢) = =5<nlog(n/e) [3, 8]. Consequently, we
can approximate |Q| within a multiplicative factor 1 + ¢ with probability > 3/4 in

O 19 M In(n/e)) time.

For k < 2A there are a variety of results showing fast convergence of Markov
chains for generating a random k-coloring [5]. These results are proved for k-colorings,
but they can most likely be extended to the nonzero temperature. One particular
example is the previously mentioned result of [6] which for planar graphs shows O*(n)
mixing time of a Markov chain when k = Q(A/log A) for all activities. (The O*()
notation hides logarithmic factors and the dependence on e.) Consequently, in this
case we again obtain an O*(n®) time algorithm for approximating the number of

k-colorings.

3.3. Proof of Lemmas 3.1 and 3.2. The rest of this section is devoted to the
proof of Lemmas 3.1 and 3.2.
Proof of Lemma 3.1. We define the following intervals:

[(s/7)(==P), o0) for i = s,
Ii = [(s/)YE=P) (s/q)V/EF1=D)] for D+1 < <s,
0, (s/1)'?] for i = D + 1.

Let ¢; be the number of A values lying in the interval I;. Fori € {D+2,...,s—1}
we have the estimate

s/ =D D41
¢; <1 , — | < 1 .
= o ( (s/ @D ) = i=D %7
Similarly,
~ 2s — D
ls <1 < 1 ,
<tor. (o) < 5= et



and

KA S )

L <1

o < o (7 2

Recall that s > 1. Putting it all together, we get the bound
2s— D D+1

< Z 4 <<D—|—1) s=p+ )logc(sv),
1=D+1

where H; = Z;Zl 1/j = O(log4) is the harmonic sum. Therefore,
£=0((D+1)log(s — D)+ s/(s — D)]log.(s7))- O

We now present a few preliminary lemmas before proving Lemma 3.2. The log-
derivative of a function f is (log f)' = f’/f. The log-derivative measures how quickly
a function increases.

DEFINITION 3.3. We say that a polynomial f is dominant over a polynomial g
on an interval I if f'(x)/f(x) > ¢'(x)/g(x) for every x € I.

LEMMA 3.4. Let f,g: I — RT be two nondecreasing polynomials. If f dominates
over g on I, then f(y)/f(x) > g(y)/g(x) for every z,y € I, x < y.

We partition the interval (0,00) into subintervals Ip1, ..., I such that z* dom-
inates over every Z-polynomial on the interval I;. The A; in I; will be such that
decreases by a factor ¢ between consecutive A. Therefore, the Z-polynomials decrease
by at most a factor of c.

LEMMA 3.5. Let g(x) = Z;:o a;jz? be a polynomial with nonnegative coefficients.
Then x° dominates over g on the interval (0,00).

Proof. Tt suffices to verify that ()" /x® > ¢'(x)/g(x) for every x > 0. d

LEMMA 3.6. Let g(x) = ijo ajz? be a polynomial with nonnegative coefficients
such that g(1) <~ and at least one of ag,a1,...,ap is > 1. Then for anyi > D + 1
the polynomial x* dominates over g on the interval (0, (s/~v)/(+1=D)].,

Proof. The log-derivative of z* is i/z. Hence we need to prove that ig(z) > z¢' ()
for x < (s/~)Y/(+1-D),

Let d be the smallest integer such that ay > 1. From the assumptions of the
lemma, d < D. For x < (s/~)'/(+1=P) the following holds:

(7—D)/(i+1—-D) s s
3 s Y e 3w (2) <3 o)
Jj=i+1

j=i+1 Jj=i+1 j=i+1

Since i > d, for x < (s/)/+1=D) we have

Zjajxj + Z ]aJ:E] < Zjajxj + agzd < ijazj <ig(x 0

Jj=i+1

Proof of Lemma 3.2. Let Ipyq,...,Is be as in the proof of Lemma 3.1. Let
Qq(N) = vZ4(X)/Z4(1). Notice that the @, satisfy the conditions required of g by
Lemma 3.6. Therefore, 2° dominates over every @, (and hence also every Z,) on the
interval I; for ¢ < s. Moreover, Lemmas 3.6 and 3.4 imply that z* dominates over
every @, (and hence every Z,) on the interval I;. Notice that if A;, A\jy1 € I;, then
e\, > A (where inequality happens only if \j 11 = (s/y)"/(=P)). Therefore, all
of the Zg-polynomials decrease by a factor of at most ¢ between consecutive values
of A. |



4. Permanent algorithm. Here we describe the simulated annealing algorithm
for the permanent. For simplicity we consider the case of a 0/1 matrix A. The
generalization to nonnegative matrices proceeds as in [10]. We assume per(A4) > 0;
i.e., there is at least one perfect matching.

We show the application of our improved cooling schedule and our improvement
in the mixing time bound for the Markov chain underlying the simulated annealing
algorithm. We present the new inequalities which are key to the improved mixing
time result in section 6.

4.1. Preliminaries. Let G = (V1, Va, E) be a bipartite graph with |V| = [V3]| =
n. We will let uw ~ v denote the fact that (u,v) € E. For u € Vi, v € V2 we will
have a positive real number A(u,v) called the activity of (u,v). If u ~ v, A(u,v) =1
throughout the algorithm, and otherwise, A(u,v) starts at 1 and drops to 1/n! as the
algorithm evolves. Once nonedges have activity < 1/n! we have that the total activity
of perfect matchings containing at least one nonedge is < 1, and hence they alter the
permanent by at most a factor of 2. The activities allow us to work on the complete
bipartite graph between V; and Vs.

Let P denote the set of perfect matchings (recall that we are working on the
complete graph now), and let A/(u,v) denote the set of near-perfect matchings with
holes (or unmatched vertices) at u and v. Similarly, let N (z,y,w, z) denote the set
of matchings that have holes only at the vertices x,y,w, z. Let A; denote the set of
matchings with exactly ¢ unmatched vertices. The set of states of the Markov chain
is Q = P UMN,. For any matching M, denote its activity as

AM) = [ Muo).

(u,w)eM

For a set S of matchings, let A(S) := >, A(M). For u € Vi, v € V, we will have a
positive real number w(u,v) called the weight of the hole pattern u,v. Given weights
w, the weight of a matching M € Q is

[ AM)w(u,v) if M e N(u,v), and
ww“’{MM) it M e P. )

The weight of a set S of matchings is
w(S) = Y w(M).
MesS
For given activities, the ideal weights on hole patterns are the following:
A(P)

AN (u,0))”
Note that for the ideal weights all the M (u,v) and P have the same weight; i.e.,
w*(P) = w*(N(u,v)) for all u,v. Hence, since w*(P) = A(P), we have w*(Q2) =
(n?2 + DHA(P).

For the purposes of the proof, we need to extend the weights to 4-hole matchings.
Let

(4.1) w*(u,v) =

A(P)
)\(N(‘,I;7 y7 w? Z)) ’

w*(‘r7 y? w7 Z) =

and for M € N(z,y,w, z), let



4.2. Markov chain definition. At the heart of the algorithm lies a Markov
chain MC, which was used in [10], and a slight variant was used in [2, 9]. Let
A Vi x Vo — Ry be the activities and w : V} x Vo — R, be the weights. The
state space is €2, the set of all perfect and near-perfect matchings of the complete
bipartite graph on Vi, V5. The stationary distribution 7 is proportional to w; i.e.,
n(M)=w(M)/Z, where Z =}, w(M).

The transitions My — M1 of the Markov chain M C' are defined as follows:
1. If M; € P, choose an edge e uniformly at random from M;. Set M’ = M; \ e.
2. If M € N (u,v), choose vertex z uniformly at random from V; U Va.
(a) If z € {u,v}, let M = M U (u,v).
(b) If z € Vo and (w,z) € My, let M/ = M U (u,z) \ (w,z).
(¢) If z € Vi and (z,2) € My, let M' = M U (z,v) \ (z, 2).
3. With probability min{1, w(M’)/w(My)}, set My41 = M'; otherwise, set M1 = M.

Note that cases 1 and 2(a) move between perfect and near-perfect matchings,
whereas cases 2(b) and 2(c) move between near-perfect matchings with different hole
patterns. Case 3 applies the Metropolis filter, which ensures that the stationary
distribution of the Markov chain is proportional to w.

The key technical theorem is that the Markov chain quickly converges to the
stationary distribution 7 if the weights w are close to the ideal weights w*. The
mixing time 7(8) is the time needed for the chain to be within variation distance 6
from the stationary distribution.

THEOREM 4.1. Assuming the weight function w satisfies inequality

(4.2) w*(u,v)/2 < wu,v) < 2w*(u,v)

for every (u,v) € Vi x Vo with N'(u,v) # 0, then the mixing time of the Markov chain
MC is bounded above by Tpr(6) = O(n*(Inw(M)~! +1Iné~1)).

This theorem improves the mixing time bound by O(n?) over the corresponding
result in [10]. The theorem will be proved in section 7.

4.3. Bootstrapping ideal weights. We will run the chain with weights w close
to w*, and then we can use samples from the stationary distribution to redefine w so
that they are arbitrarily close to w*. For the Markov chain run with weights w, note
that

w(u, V)AN (u,v))  w(u, v)A(P)

TN (w,0)) = > = ey = (P)

w(u,v)

w*(u,v)’
Rearranging, we have

m(P)

(4.3) w*(u,v) = AN w.0)

w(u,v).
Given weights w which are a rough approximation to w*, identity (4.3) implies an
easy method to recalibrate weights w to an arbitrarily close approximation to w*. We
generate many samples from the stationary distribution and observe the number of
perfect matchings in our samples versus the number of near-perfect matchings with
holes u, v. By generating sufficiently many samples, we can estimate m(P)/m (N (u,v))
within an arbitrarily close factor, and hence we can estimate w* (u, v) (via (4.3)) within
an arbitrarily close factor.

More precisely, recall that for w = w*, the stationary distribution of the chain
satisfies (N (u,v)) = 1/(n? + 1). For weights w that are within a factor of 2 of



the ideal weights w*, it follows that 7(A'(u,v)) > 1/4(n? +1). Then, by Chernoff
bounds, S = O(n?log(1/7)) samples of the stationary distribution of the chain suffice
to approximate 7(P)/7(N (u,v)) within a factor v/2 with probability > 1 — 7. Thus,
by (4.3) we can also approximate w* within a factor v/2 with the same bounds.

Theorem 4.1 (with § = ©(1/n?)) implies that T = O(n*logn) time is needed to
generate each sample (we will choose 7} so that the failure probability of the entire
algorithm is small; e.g., 7 = ©(1/n*) suffices). To be precise, this requires the use of
“warm start” samples in which the initial matching for the Markov chain simulation
is a reasonable approximation to the stationary distribution. In particular, after the
initial sample from (close to) the stationary distribution, the initial matching for each
simulation is the final matching from the previous simulation. (The application of
warm starts in our work is identical to their use in [10]; hence we refer the interested
reader to [10] for further details.)

4.4. Simulated annealing with new cooling schedule. In this section we
present an O*(n") algorithm for estimating the ideal weights w*. The algorithm will
be used in section 4.5 to approximate the permanent of a 0/1 matrix. The algorithm
can be generalized to compute the permanent of general nonnegative matrices; see
section 9.

The algorithm runs in phases, each characterized by a parameter A. In every
phase,

1 fore€eFE,
(4.4) Ale) = {)\ foredg E.

We start with A = 1 and slowly decrease A until it reaches its target value 1/n!.

At the start of each phase we have a set of weights within a factor 2 of the ideal
weights for all u, v, with high probability. Applying Theorem 4.1 we generate many
samples from the stationary distribution. Using these samples and (4.3), we refine
the weights to within a factor v/2 of the ideal weights:

w*(u, v)
V2

This allows us to decrease A so that the current estimates of the ideal weights for \;
are within a factor of 2 of the ideal weights for A;1;.

In [10], O(n?logn) phases are required. A straightforward way to achieve this
is to decrease \ by a factor of 271/" between phases as considered in section 3.1 for
colorings.

We use only £ = O(n log? n) phases by progressively decreasing A by a larger
amount per phase. Initially we decrease A by a factor of 2='/" per phase, but during
the final phases we decrease A\ by a constant factor per phase.

Here is the pseudocode of our algorithm. The algorithm outputs w, which is a
2-approximation of the ideal weights w* with probability > 1—7. Recall from the last
paragraphs of the previous section that S = O(n?(logn + logn~1)) since n = O(¢7),
and T = O(n*logn).

(4.5) < w(u,v) < V2w*(u,v).

Algorithm for approximating ideal weights of 0/1 matrices:
Initialize A = 1 and ¢ = n.
Initialize w(u,v) < n for all (u,v) € V1 x Va.
While A > 1/n! do:
Take S samples from MC with parameters A, w, using a warm start simulation



(in particular, initial matchings for the simulation are the final matchings
from the previous simulation). We use T steps of the MC' per sample,
except for the first sample which needs O(T'nlogn) steps.

Use the samples to obtain estimates w’(u, v) satisfying condition (4.5)
for all u,v. The algorithm fails (i.e., (4.5) is not satisfied) with small
probability.

Set A =271/,

Ifi >2and A < (n— 1)~/ G-
Set A = (n — 1)!=Y/G=1) and decrement i =4 — 1.

If A< 1/n!, set A=1/nl

Set w(u,v) = w'(u,v) for all u € Vi, v € Va.

Output the final weights w(u,v).

By Lemma 3.1, the above algorithm consists of O(n log? n) phases. This follows
from setting s = n, ¢ = v/2, v = n!, and D = 1 (the choice of D becomes clear
in section 8). In section 8 we show that Lemma 3.2 implies that our weights at the
start of each phase satisfy (4.2) assuming that the estimates w’ satisfied condition
(4.5) throughout the execution of the algorithm. Therefore, the total running time is
O(STnlog?n) = O(n" log* n).

4.5. Reduction from counting to sampling. Let \g =1> XAy > --- > Ay =
1/n!, £ = O(nlog®n), be the sequence of A used in the weight-estimating algorithm
from the previous section. Assume that the algorithm did not fail, i.e., the hole
weights wo, ..., w, computed by the algorithm are within a factor of v/2 from the
ideal weights wg, ..., w;.

It remains to use these (constant factor) estimates of the ideal weights to obtain a
(1+e)-approximation of the permanent. This is done by expressing the permanent as
a telescoping product as was done for colorings in section 3.1. We refer the interested
reader to section 5 from [10] for details of the argument. The only difference from [10]
is that the number of intermediate temperatures is £ = O(nlog2 n) as opposed to
O(n%logn). The total running time of this part of the algorithm is O(¢2/e2n*logn) =
O(nSlog® ne=2). This completes the description of the algorithm for 0/1 matrices.

5. Canonical paths for proving Theorem 4.1. Recall the canonical paths
method from section 2.2. We will use this approach with .S = P. To prove Theorem 4.1
we need to define canonical paths (I, F') for all initial I € 2 and final F' € P. These
paths will have length ¢ < n, and hence we need to show that the congestion satisfies
p(T) = O(n) for every transition T. The canonical paths we use are identical to those
considered in [10] (and in the earlier work of [9]).

We define the canonical paths now and defer the bound on the congestion to
section 7, after presenting some combinatorial lemmas in section 6. We will assume
that the vertices of G are numbered. If I € P, then I @ F consists of even length
cycles, where @ denotes the symmetric difference. Let us assume that the cycles are
numbered according to the smallest numbered vertex contained in them. The path
~v(I, F) “corrects” these cycles in order. Let vg, vy, ..., v2p—1 be a cycle C, where vy is
the smallest numbered vertex in C and (vg,v1) € I. The path starts by unmatching
edge (vg,v1) and successively interchanging edge (ve;,v2;11) for edge (vo;—1,v9;) for
1 <4 <k—1. Finally, it adds edge (v2;—1,vp) to the matching.

If I € M(w,z), then there is an augmenting path from w to z in I & F. The
canonical path starts by augmenting I along this path by first exchanging edges and
finally adding the last edge. It then “corrects” the even cycles in order. Figure 5.1
shows an intermediate transition on the canonical path from I to F.
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Legend: I, a near—perfect matching with holes at w, z
‘ F, a perfect matching

3 T, an intermediate transition on the path from I to F

Fic. 5.1. This figure illustrates a near-perfect matching I and a perfect matching F, along with
a transition T on the canonical path from I to F. The transition is “sliding” an edge in the cycle
denoted as C. The components of I & F are shown in increasing order (from left to right). The
alternating path and the cycles to the left of C have been already “corrected,” whereas the cycles on
the right still need to be “corrected.” The unfinished cycle is partially corrected: From vg to va;—1
the cycle is the same as F, whereas from va;y1 to vap_1 the cycle is the same as I. (A similar
picture arises on the canonical path from a perfect matching to a perfect matching, except in that
case there is no alternating path.)

This completes the definition of the canonical paths, and it remains to bound
their associated congestion. To this end, in the following section we present several
inequalities which are used to improve the analysis of the congestion.

6. Key technical lemmas. The following lemma contains the new combinato-
rial inequalities which are the key to our improvement of O(n?) in Theorem 4.1. These
inequalities will be used to bound the total weight of (I, F') pairs whose canonical path
passes through a specified transition. In [10] weaker inequalities were proved without
the sum in the left-hand side and were a factor of 2 smaller in the right-hand side.
The proof of Lemma 6.2 below improves on Lemma 7 in [10] by constructing more
efficient mappings. We first present our mappings in the simpler setting of Lemma 6.1
and later use them to prove Lemma 6.2. Using these new inequalities to bound the
congestion requires more work than the analysis of [10].

LEMMA 6.1. Let u,w € Vi, v,z € Vu be distinct vertices. Then,

1.
> N (u, 0) |V (2, )| < 2|PP?,
z,y:(u,y),(z,v)EE
2.
> W(w0)|IN(x,2)] < 2N (u, 2)||P],
z:(z,v)EE
3.

> N (w, 0)|IV (2, y, w, 2)| < 2N (w, 2)][P].

z,y:(w,y),(z,v)EE

The basic intuition for the proofs of these inequalities is straightforward. For
example, consider the first inequality. Take matchings M € N (u,v), M' € N(z,y).
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Fic. 6.1. Proof of Lemma 6.1, part 1. Two different possibilities for Lo @ L.

The set M UM’ U (u,y) U (z,v) consists of a set of alternating cycles. Hence, this set
can be broken into a pair of perfect matchings. One of the perfect matchings contains
the edge (u,y), and one matching contains the edge (x,v). Hence, given the pair of
perfect matchings, we can deduce the original unmatched vertices (by guessing which
of the two edges is incident to u) and thereby reconstruct M and M’. This outlines
the approach for proving Lemma 6.1.

Proof. 1. We will construct a one-to-one map:

f1: N(u,v) x U N(z,y) = P xPxb,

z,y:(w,y),(z,v)EE

where b is a bit, i.e., bis 0/1.

Let Lo € N(u,v) and L1 € Uy y:(u,y),(2,0)e N (2,4). In Lo @ Ly the four vertices
u, v, T,y each have degree one, and the remaining vertices have degree zero or two.
Hence these four vertices are connected by two disjoint paths. Now there are three
possibilities:

e If the paths are u to x and v to y, they must both be even length, as seen in
Figure 6.1(a).

e If the paths are u to v and x to y, they must both be odd length, as seen in
Figure 6.1(b).

e The third possibility, © to y and v to z, is ruled out since such paths start
with an Ly edge and end with an L; edge and hence must be even length; on
the other hand, they connect vertices across the bipartition and hence must
be of odd length.

Now, the edges (u,y) and (v,x) are in neither matching, and so (Lo ® L1) U
{(u,y), (v,z)} contains an even cycle, say, C, containing (u,y) and (z,v). We will
partition the edges of Ly U L1 U {(u,y), (v,2)} into two perfect matchings as follows.
Let My contain the edges of Ly outside C' and alternate edges of C' starting with edge
(u,y). M; will contain the remaining edges. Bit b is set to 0 if (z,v) € My and to 1
otherwise. This defines the map fi.

Next, we show that f; is one-to-one. Let My and M; be two perfect matchings
and b be a bit. If v and v are not in one cycle in My & My, then (Mg, My,b) is not
mapped onto by f;. Otherwise, let C' be the common cycle containing u and v. Let y
be the vertex matched to v in My. If b = 0, denote by = the vertex that is matched to
v in My; else denote by x the vertex that is matched to v in M;. Let Ly contain the
edges of My outside C, and let it contain the near-perfect matching in C' that leaves
u and v unmatched. Let L; contain the edges of M; outside C, and let it contain



the near-perfect matching in C' that leaves x and y unmatched. It is easy to see that
fl(LO;Ll) = (MOaMlvb)'
2. We will construct a one-to-one map:

f2 i N(u,v) x U N(x,2) = N(u,2) x P xb.

z:(z,w)EE

Let Lo € N(u,v) and L1 € Ug ()N (2, 2). As before, u,v,,z are connected
by two disjoint paths of the same parity in Ly & L1 and (v,z) ¢ Lo U L;. Hence,
Lo U Ly U {(x,v)} contains an odd length path from w to z, say, P. Construct
My € N (u, 2) by including all edges of Lo not on P and alternate edges of P, leaving
u, z unmatched. Let M7 € P consist of the remaining edges of Lo U L1 U{(z,v)}. Let
b=0if (v,x) € My, and b = 1 otherwise. Clearly, path P appears in My ® M;, and
as before, Ly and Ly can be retrieved from (Mg, My, b).
3. We will construct a one-to-one map:

f3 1 N(u,v) x U N(z,y,w,2z) = N(w,z) x P xb.

z,y:(w,y),(z,v)EE

Let Ly € N(u,v) and L1 € Uy y.(u,y),(,0)e N (@, y,w, 2). Consider Lo @ Ly. There
are two cases. If there are two paths connecting the four vertices u,v,z,y (and a
separate path connecting w and z), then the mapping follows using the construction
given in case 1. Otherwise, by parity considerations the only possibilities are
e y to w and v to y are even length paths and x to z is an odd length path;
e u to x and v to z are even length paths and w to y is an odd length path;
e y to w and v to z are even length paths and z to y is an odd length path;
and
e u to v, x to z, and w to y are odd length paths.
Now, LoUL; U{(u,y), (v,z)} contains an odd length path, say, P, from w to z. Now,
the mapping follows using the construction given in case 2. a
The following lemma is an extension of the previous lemma, which served as a
warm-up. This lemma is used to bound the congestion.
LEMMA 6.2. Let u,w € Vi, v,z € V5 be distinct vertices. Then,

1.
Yo A A AN (u, 0) AN (2,3)) < 2A(P)?,
z€V1,yeVa
2.
Z A, V) AN (u, ) AN (2, 2)) < 2M(N (u, 2))A(P),
zeVy
3.

Z Au, YA (@, V)AN (u, V) AN (2, ¥, w, 2)) < 2AN (w, 2))A\(P).

xzeVy,yeVs

Proof. We will use the mappings f1, f2, f3 constructed in the proof of Lemma 6.1.
Observe that since mapping fi constructs matchings My and M; using precisely the
edges of Lo, L1 and the edges (u,y), (z,v), it satisfies

Al A (2, )AL)A(L1) = A(Mo)A(M,).



Summing over all pairs of matchings in

N (u,v) x U N,

z,y:(w,y),(z,v)EE

we get the first inequality. The other two inequalities follow in a similar way using
mappings fo and fs. ]

7. Bounding congestion: Proof of Theorem 4.1. We bound the congestion
separately for transitions which move between near-perfect matchings (cases 2(b)
and 2(c) in the definition of chain MC in section 4.2) and transitions which move
between a perfect and near-perfect matching (case 1). Our goal for this section will
be to prove for every transition T'= M — M’,

wDw(F) _ 50
(7.1) u,m;m o (00) = O(w" ().
Te~(I,F)

At the end of this section we will prove that this easily implies the desired bound on
the congestion.

For a transition T'= M — M’, we need to bound the number of canonical paths
passing through 7. We partition these paths into 2n? + 1 sets,

epr={(I,F)ePxP:~I,F)>T},
and, for all w, z,
P = {(I,F) € N(w,2) x P 4(I,F) 5 T}

The following lemma converts into a more manageable form the weighted sum of
I, F" pairs which contain a transition of the first type.

LEMMA 7.1. Let T = M — M’ be a transition which moves between near-
perfect matchings (i.e., case 2(b) or 2(c)). Let M € N(u,v), M" € N(u,v"), u € Vi,
v,v" € Vo, and M = M\ (z,v") U (z,v) for some x € Vi. Then, the following hold:

1.

Yo MDAE) < D0 AN (2, 9) A, )Mz, 0)A(M).

(I,F)EcpT yeVa

2. For all z € Vs,

ST ADAF) < AW, 2)) Az, v)AM).

(I,F)ecpy®

3. Forallwe Vi, w#u, and z € V3, z # v,/

Yo ADAE) £ D AN (w, 2,2, 9) A, y) M@, v)A(M).

(I,F)ecpy® yeVa

Proof. 1. We will first construct a one-to-one map:

nr :epp — U N(z,y).

z,y:(w,y),(z,v)EE
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Fic. 7.1. Proof of Lemma 7.1, part 1.

Let I,FF € P and (I,F) € cpp. Let S be the set of cycles in I @ F. Order the
cycles in S using the convention given in section 5. Clearly, u, v, x lie on a common
cycle, say, C € S, in I ® F. Since T lies on the canonical path from I to F', M has
already corrected cycles before C' and not yet corrected cycles after C' in S. Let y
be a neighbor of u on C. Define M € N (z,y) to be the near-perfect matching that
picks edges as follows: outside C, it picks edges (I U F') — M, and on C' it picks the
near-perfect matching leaving x, y unmatched. Figure 7.1 shows the definition of M".
Define nr(I,F) = M".

Clearly, (M & M") U {(u,v), (z,y)} consists of the cycles in S, and I and F can
be retrieved from M, M" by considering the order defined on S. This proves that the
map constructed is one-to-one. Since the union of edges in I and F equals the edges
in MUM"U{(u,v), (z,y)},

MDAE) = XM)NM" I\ (u, )Nz, v).

Summing over all (I, F) € cpr, we get the first inequality.
2. For all z € V5, we will again construct a one-to-one map:

ny” epp® — Nz, 2).

Let I € N(u,z), F € P, and (I, F) € cpy:®. Let S be the set of cycles and P be the
augmenting path from u to z in I ® F. Clearly, = and v lie on P. M has “corrected”
part of the path P and none of the cycles in S. It contains the edges of I from z to
v and the edges of F' from z to u. Also, it contains the edges of I from the cycles in
S as well as the edges in I N F.

Construct matching M"” € N (x, z) as follows. It contains the edges of F' from the
cycles in S, the edges I N F, and (P — {(z,v)} — M). Define ny7*(I,F) = M". Tt is
easy to see that M UM"” =T UF U{(z,v)}. Therefore,

ADNF) = AM)AM" )Nz, v).

Furthermore, I, F' can be retrieved from M, M"”. Hence, summing over all (I, F) €
cpy”, we get the second inequality.

3. For all w € Vi, w # u, and z € Vo, 2z # v,v’, we will construct a one-to-one
map:

np” eppt — U N(w, z,z,y).
Yyu~y

Let I € N(w, z), F € P,and (I, F) € cpp’®. Let S be the set of cycles and P be the
augmenting path from w to z in I & F. Clearly, u, v,z lie on a common cycle, say,



C e S,in I®F. Therefore, M has already “corrected” P, and so it looks like F' on P.
Construct M" € N(w, z, z,y) as follows. On P, it looks like I. Outside PUC, it picks
edges (JUF)—M, and on C it picks the near-perfect matching leaving x, y unmatched.
Define n7 (I, F) = M". 1t is easy to see that M UM" = I U F U {(u,y), (z,v)}.
Therefore,

MDANE) = MM)NM" I\ (u, y) Nz, v).

Furthermore, I, F' can be retrieved from M, M"”. Hence, summing over all (I, F) €
cpy’®, we get the third inequality. O

We now prove (7.1) for the first type of transitions. The proof applies Lemma 7.1
and then Lemma 6.2. We break the statement of (7.1) into two cases depending on
whether I is a perfect matching or a near-perfect matching.

LEMMA 7.2. For a transition T = M — M’ which moves between near-perfect
matchings (i.e., case 2(b) or 2(c)), the congestion from (I, F) € P x P is bounded as

(7.2) Z w*(Hw*(F) < 2w*(Q)

w*(M) — n?
(I,F)€cpr

And, the congestion from (I, F) € Ny X P is bounded as

(7.3) > > w(w' (1) < 3w*(Q).

w* (M)
weVL,2€Va (I,F)ecpy®

Proof. The transition T is sliding an edge; let x denote the pivot vertex, and let
M € N(u,v) and M’ € N(u,v'), where u € Vi, v,v" € Vo. Thus, M' = M \ (v',z) U
(z,v) for some z € V.

We begin with the proof of (7.2):

w*(w* (F
T (Hw*(F)

(i, D
AN (u, v))

= AMDAF) =125

(I,ge:cpT AM)A(P)

AN (@, y))Mu, y) Az, v) AN (u, v))

< P \P) (by Lemma 7.1)
< 2X(P) (by Lemma 6.2)
_ 2w(Q)
ConZ241

Note that the application of Lemma 6.2 uses only the summation over y and
does not require the summation over z. We have now completed the proof of (7.2).
We now prove (7.3) in two parts. This first bound covers the congestion due to the
first part of the canonical paths from a near-perfect matching to a perfect matching,
unwinding the augmenting path. The second bound covers the second part of these
canonical paths when we unwind the alternating cycle(s). During the unwinding of
the augmenting path, one of the holes of the transition is the same as one of the holes
of the initial near-perfect matching. This is what characterizes the first versus the



second part of the canonical path.

w* (Dw*(F
>y e

z€V2 (I,F)€cpy®

= AN (w,0))
- ; (LF)%W AI)A(F) I O)

AN (2, 2)) Az, 0) AN (u, v))
> ANV )

< > 2\(P)  (by Lemma 6.2)
zeVa
2n
= — * Q
n? 4 1Y (©)
< w*(Q).

(by Lemma 7.1)
z€Va

Finally, bounding the congestion from the unwinding of the alternating cycle(s)
on canonical paths from near-perfect matchings to perfect matchings,

w* (Dw*(F
Yy e

weV],2EVa: w,z
w ul};u 2: (I,F)€cpy

AN (u, v))
wvzv P MO BN w, 2)

IN

Sy A )M )\ AW ()

ANV (w, 2) (by Lemma 7.1)

wEV,2EVa: yEV,
wHu :

< Z 2M(P) (by Lemma 6.2)

weVy,z€Va:
wH#u

< 2w* (). O

We now follow the same approach as Lemmas 7.1 and 7.2 to prove (7.1) for
transitions moving between a perfect and a near-perfect matching. The proofs in this
case are easier.

LEMMA 7.3. For a transition T = M — M’ which removes an edge (i.e., case 1)
or adds an edge (i.e., case 2(a)), let (u,v) be the removed/added edge, and let N be
the near-perfect matching from the pair M, M’ (i.e., if adding an edge N = M, and
if removing an edge N = M'). Then,

> MDAE) < AP)A(u, v)AN).
(I,F)ecpp
And, for allw € Vi, z € Vo,
ST AMDAF) < AN (w,2))A(u, 0)A(N).
(I,F)ecpy®

Proof. Let P denote the perfect matching from the pair M, M’. Define n = ny* :
epp” — N(w, z) as

n(I,F)=TUF\P.



The mapping satisfies A(I)A(F) = MP)A(n(I, F)). Note that A(P) = MN)A(u,v).
Since the mapping is one-to-one, summing over all N’ € N (w, z) proves the lemma
for all w, z. The proof is identical for cpy with the observation that when I € P, we
have that T U F'\ P is in P. 0

LEMMA 7.4. For a transition T = M — M’ which adds or subtracts an edge
(i.e., case 1 or 2(a)), the congestion from (I,F) € Q x P is bounded as

W (e)
wZZ: (I,F)ze;p;a w* (M) < wi(@)

and

w* (Dw* (F w*(Q
2 i
(I,F)€cpp

Proof. Let M € N(u,v) and M’ € P; thus the transition adds the edge (u,v).
The proof for the transition which subtracts the edge will be analogous. The proof is
a simplified version of Lemma 7.2, using Lemma 7.3.

Observe that for any x, vy,

(7.4) Az, y) AN (2, 9)) < M(P).
We begin with the proof of the first inequality in Lemma 7.4.

w (D () _ AN (w1
2. X —ran —x 2 MDXE)SHETiNw )

w,z (I,F)Ecpy’? w,z (I,F)Ecpy’?

< Z A(u, V)AN (u,v)) (by Lemma 7.3)

<w'(Q)  (by (T.4)).

We now prove the second inequality in Lemma 7.4.

P D DRI E Lt
wigewe UM i,

< 22X (u, v)A(N (u, v)) (by Lemma 7.3)
<A(P)  (by (14). D

We now restate Theorem 4.1 and then present its proof.
THEOREM 4.1. Assuming the weight function w satisfies inequality

(4.2) w*(u,v)/2 < wu,v) < 2w*(u,v)

for every (u,v) € Vi x Vo with N'(u,v) # 0, then the mizing time of the Markov chain
MC is bounded above by Tpr(8) = O(n*(Inw(M)~! +1né1)).

Proof of Theorem 4.1. Inequality (4.2) implies for any set of matchings S C Q) that
the stationary distribution 7(S) under w is within a factor of 4 of the distribution
under w*. Therefore, to prove Theorem 4.1 it suffices to consider the stationary
distribution with respect to w*. In other words, we need to prove, for every transition
T, p(T) = O(n) where, for M € Q, n(M) = w*(M)/w*(Q). Then for weights



satisfying (4.2) the congestion increases by at most a constant factor. Thus, we need
to prove

w*(Hw*(F)
= O(nw*(£2)).
2. o anpPar ) ~ (@)
(I,F)eQxP:
Te~(I,F)

Recall case 3 in the definition of the Markov chain M C' (section 4.2), where the
Metropolis filter is applied.

In particular, from My, a new matching N is proposed with probability 1/4n, and
then the proposed new matching is accepted with probability min{1, w*(N)/w*(M;)}.
Hence, for the transition T = M — M’,

w* (M)P(M, M') = ﬁ min{w* (M), w* (M)}

The chain is reversible; thus for every transition T = M — M/’, there is a reverse
transition 7" = M’ — M. Hence, to prove Theorem 4.1, it suffices to prove that for
every transition T = M — M’,

w(Dw(E) _ 5
(7.5) (1,F)Zes;x7>: o (30) = O(w" ().
Te~(I,F)

Lemmas 7.2 and 7.4 imply (7.5) which completes the proof of the theorem. d

8. Phases in the permanent algorithm. In this section we show that the
choice of A from the weight-estimating algorithm ensures that (4.2) is satisfied in
each phase. Recall that we can obtain a refined estimate of the ideal weights in each
phase; see (4.5). We need to guarantee that the weights of two consecutive phases do
not differ too much. Namely, if they are within a /2 factor of each other, together
with (4.5) we have (4.2) for the next phase. As we will see shortly, for our choice
of activities the ideal weights w*(u,v) are a ratio of two polynomials of degree < n
evaluated at A. This observation will allow us to use Lemma 3.2.

DEFINITION 8.1. We say that a matching M € P of a complete bipartite graph
covers k edges of a graph G if the size of M N E(G) is k. Let

Ra(x) =Y pra™ ",
k=0

where py, is the number of matchings in P covering k edges of G.
Note that the ideal weights w*, defined by (4.1), for activities given by (4.4) can
be expressed as

__Re(¥)
RG\{u,v} ()‘)

First we observe that every R-polynomial has a positive low-degree coefficient
(and consequently in the application of Lemma 3.2 we will have that D is small).
In particular, the coefficient of either z° or ! is positive in each of the polynomials
Rg, Ren\{u,v} for every u € Vi, v € Va. This follows from the fact that G contains
a perfect matching. Let M be a perfect matching of G. The existence of M implies
that the constant term in R is positive. Similarly, if (u,v) € M, then the constant

(8.1) w} (u, v)



term in R\ (y,0} s positive because M \ {(u,v)} is a perfect matching in G \ {u, v}.
If (u,v) & M, let v, respectively, v/, be the vertices matched to v and v in M, and
let M' =M U{(v,u)}\ {(u,u),(v,v")}. Depending on (v',u') being an edge in G,
the cardinality of M’ is either n — 1 or n — 2. Therefore, the coefficient of either x°
or z! in Re\ {u,v) is positive.

Now we are ready to apply Lemma 3.2. Let ¢ = 2, y =n!l, D =1, s = n,
and Z1 = Rg, and the polynomials Zy, ..., Z,2,; are the Rg\y,»} polynomials for
u € Vi,v € Vu. Let Ag,...,Ar be the sequence obtained from the algorithm in
section 3.2. Notice that we obtain the same sequence in the algorithm for estimating
weights of the permanent. Then

(8.2) Ra(Ak) > Ro(Mkt1) = Ra(Ak)/V2, and
Renfuwy (k) = Ren fuwy (Akt1) = Renfu} (M) /V2 - for every u, v,

Equations (8.1) and (8.2) imply the w}, and w3, ,  are within a V/2 factor. More-
over, if the weight-estimating algorithm does not fail, i.e., the wy, satisfy (4.5), then
wy, also satisfy (4.2), as required by Theorem 4.1.

9. Nonnegative matrices. The extension to nonnegative matrices follows iden-
tically as in section 7 of [10]; hence we refer the interested reader to [10].

10. Discussion.

10.1. Recent improvements. In this paper, we have presented a near-optimal
cooling schedule subject to the constraint that each of the ratios Z;/Z;_; in (1.1)
is bounded. However, in order to estimate the ratio efficiently, it suffices to have
an unbiased estimator with bounded variance and the ratio itself might be large. A
recent paper [18] presents a general cooling schedule achieving the bounded variance
property. As a consequence, for many combinatorial problems, such as colorings or
matchings, [18] achieves a cooling schedule of length O*(y/n), whereas in this paper we
present a schedule of length O*(n). Therefore, the improved schedule of [18] reduces
(compared with this paper) the overall running time by a factor of O*(n) for many
combinatorial counting problems. For the permanent, the improved cooling schedule
of [18] does not appear to apply, since the algorithm for approximating the permanent
needs to consider multiple polynomials simultaneously.

10.2. Permanent application. With the improvement in running time of the
approximation algorithm for the permanent, computing permanents of n x n matrices
with n =~ 100 now appears feasible. Further improvement in the running time is an
important open problem.

Some avenues for improvement are the following. We expect that the mixing
time of the underlying chain is better than O(n*). Some slack in the analysis is in
the application of the new inequalities to bound the congestion. In their application
we simply use a sum over gy, whereas the inequalities hold for a sum over x and y as
stated in Lemma 6.2.

Another direction is reducing the number of samples needed per phase. It is
possible that fewer samples are needed at each intermediate activity for estimating
the ideal weights w*. Perhaps the w* satisfy relations which allow for fewer samples
to infer them.

Appendix. A lower bound of the number of k-colorings. We will use a®

to denote a!/(a — b)!. Let G be a graph, and for each vertex i of G let L; be a list of



colors. A valid list-coloring of G is a coloring such that each i has a color from L;,
and no two neighbors have the same color.

LeEMMA A.1. Let G be a graph with n vertices. Let d; be the number of vertices
of degree j in G. Let s be an integer, s > 1. Let Ly,...,L, be sets such that
|L;| > s+ degi for each vertex i of G. Let Q be the set of valid list-colorings of G.
Then

n
|Q‘ Z HC;lj7
Jj=0

where ¢ = ((s + j)EL)/ G+,

Proof. We will use induction on dy + --- + dg. Let v be the vertex of minimum
degree ¢. We have |L,| > £+ s. Let ji,...,7¢ be the degrees of the neighbors of v.
Note that j; > £ fori=1,... 4.

By the induction hypothesis
(A1)

Q> (0 +5) Hc (ﬁcﬂl> (¢ +5) ﬁ (c“> Hc],

i=1 Cj; —

where in the second inequality we used the inequality ¢;/c;41 > ¢j—1/c;, which we
prove next.
Let T = (s + j)2tL. We want to show

2/(+1) T\ W/G42)
T > . (T(s+37+1)) :
s+

After raising both sides to —j(j + 1)(j + 2)/2 and multiplying by TCE)+ (”2), we
obtain an equivalent inequality

(s +4)(%)

A2 < I
(4-2) (s+j+1)0%)

Using the inequality between the arithmetic and geometric means,

()

< s+
which implies (A.2). Therefore, c > ¢j+1¢j—1, and hence the induction step (A.1) is
proved. 0

For k-colorings we obtain the following result.

COROLLARY A.2. Let G be a graph with n vertices and mazimum degree A. Let
k> A. Let Q be the set of valid k-colorings of G. Then

o (- (2
e e

Proof. Let s = k — A. The first inequality follows from Lemma A.1 with the
L; = [k].
The second inequality is equivalent to

(A.3) (s+A)2EL > (s + AJe)> T,



The inequality (A.3) is true for A = 0, and hence from now on we assume A > 1.
Let f(s,A) = ZzA:o In szi/e. Inequality (A.3) is equivalent to f(s,A) > 0.
CLAIM.

(A4) f(1,A) > 0.

Proof of the claim. We need to show that (A.3) holds with strict inequality for
s =1. Let n = A+ 1. We want to show n! > (1 + (n — 1)/e)™. The inequality
n! > v/27mn(n/e)™ implies that it is enough to show 27n > ((n + e — 1)/n)?", which
(using 1+ x < e®) is implied by 2mn > e2(¢~1). Hence we proved (A.3) for s = 1 and
n > 5. For n < 4 and s = 1 the (strict version of) inequality (A.3) is easily verified
by hand. 0

Each term in the definition of f goes to zero as s goes to infinity. Hence we have

(A.5) lim f(s,A)=0.
Note that
of 1 S Ae—i
/ = — =
f(saA)_as(saA) s—&—A/e; S+i .

From A(A+1)/e < A(A+1)/2 it follows that for every A there exists sa such that

(A.6) f(s,A) <0 for all s > sa.

Let g(s,A,y) = Zf:o 38’_7_; We have g(s,A,y) =0 iff

o= (555) / (k).

We will show that ya(s) is an increasing function of s. This will imply that the
equation A/e = ya(s) has at most one solution for any fixed A. Note that f'(s,A) =
9(s, A, A/e). Hence we will obtain that f’(s, A) = 0 has at most one solution for any
fixed A. This, together with (A.4), (A.5), and (A.6), implies f(s,A) > 0.

It remains to show that

(A7) (Oya/0s)(s) > 0.
The sign of (Jya/0s)(s) is the same as the sign of

e = (555) (S ) - (B) (B i)

=0 =0 =0

For A = 0 we have h(s,A) = 0. To show (A.7) it is enough to show that for A > 1
the following quantity is positive:

A . A
h'(s,A) := h(s,A) —h(s,A—1) = s—iA (Z (sA+—i;2) + G +1A)2 (Z Zg;?) .
0 0

1=




For A = 0 we have (s + A)?1/(s, A) = 0. To show h'(s,A) > 0 for A > 1 it is enough
to show that for A > 1 the following quantity is positive:

R (s,A) == (s + A)?*h/(s,A) = (s + A = 1)?H(s,A — 1) =

We have that h'’(s, A) is a sum of positive numbers and hence h” (s, A) > 0 for A > 1.
This implies h'(s,A) > 0 for A > 0 and this in turn implies h(s,A) > 0 for A > 1.
We just proved (A.7), which was all that remained to be proved. |
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